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Abstract

When crystallizers are searching for the optimum crystallization conditions, they often carry out experiments that are
confusing and difficult to interpret. This confusion arises because there are several important variables in any protein
crystallization experiment (including protein concentration, precipitant concentration, pH and temperature) and these
variables often interact—that is to say, changes in the level of one variable often change the optimum settings of the others.
Confusion can be avoided by using appropriate experimental designs where all of the important variables are varied in
each experimental run. Some well known and practical designs for automatic and manual crystallization are presented,
and a simple practical example is given. ( 1999 Elsevier Science B.V. All rights reserved.

PACS: 81.10; 07.05F; 87.15

Keywords: Multivariate experimental designs; Multidimensional experimental designs; Software for experimental design;
Automation of crystallization; Central composite design; Box—Behnken design

1. Introduction

Most protein crystallizers are unfortunately not
familiar with techniques (invented during the
1950s) for designing experiments in systems with
several important variables. Such techniques,
which use so-called “multivariate” designs, are par-
ticularly appropriate for protein crystallization
— there are always four important variables in

a crystallization experiment (protein concentration,
precipitant concentration, pH and temperature),
and often there are many more. Moreover, these
variables often interact with each other — that is to
say adjustment of one variable affects the optimum
levels of the others. The resulting confusion in inter-
preting results can generally be avoided by appro-
priate experimental design.

This paper describes some pitfalls of conven-
tional approaches, some of the well-established
multivariate experimental designs, and useful soft-
ware, including software written for IMPAX, an
automatic crystallization system that specializes in
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Fig. 1. (a) A contour plot of the response of a system where two
variables do not interact. Contours here show the quality of
crystals. (b) is a representation of a response where two variables
do interact: here the best setting of variable 1 is affected by the
setting of variable 2, and vice versa.

the microbatch crystallization technique [1,2]. The
microbatch method is particularly appropriate for
multivariate designs since the crystallization condi-
tions are known exactly. However, the same
software that is used by IMPAX can be used for
manual crystallization including vapor diffusion,
and it is available at http://www.douglas.co.uk/soft-
ware.htm. This program uses a novel method of
generating designs where the user selects groups of
geometric points (e.g. vertices, centers of edges,
centers of faces, etc.) until the required number of
experimental points are defined.

This paper deals only with crystal optimization.
Other designs that can deal with dozens of vari-
ables, such as the sparse matrix [3,4] and incom-
plete factorial [5] designs, should be used for
screening to find initial crystallization conditions.

Several simple multivariate designs are widely
used in other fields (e.g. agriculture, food produc-
tion, mechanical engineering). These include the
central composite [6] and the Box—Behnken [7]
designs described below. A few crystallizers have
used multivariate designs. Carter et al. have used
them extensively with several new proteins in order
to determine their structures. For example, they
used a full-factorial design (where all combinations
of high and low settings of variables are used)
to crystallize Bacillus stearothermophilus trypto-
phanyl-tRNA synthetase and to draw biochemical
conclusions [8]. In the same paper they present
a novel multivariate design for four variables that
was created specially for protein crystallization
called the Hardin—Sloane design. This was later
used to crystallize E. coli cytidine deaminase [9].
More recently, Prater et al. used simplex designs to
optimize conditions for several model proteins
[10].

However, there seems to be a division between
crystallizers who are interested in experimental
design for its own sake, and those who simply
want to get crystals as quickly and easily as
possible for determining protein structures. The
vast majority of crystallizers initially set up a two-
dimensional array of points where they vary
precipitant concentration against pH. Only if this
gives poor results do they try changing other vari-
ables. This paper seeks to explain the need for
multivariate designs and make them accessible to

crystallizers who are not interested in the theory of
experimental design.

2. Using multivariate designs for crystal
optimization

Protein crystallization always involves at least
four variables. These are:

1. protein concentration;
2. precipitant concentration;
3. pH;
4. temperature.

In addition, there may be one or more buffers and
additives. Also, the history of the protein sample
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1Fig. 2a—Fig. 2c appears to show one-dimensional experi-
ments because each run appears as a single line. However, each
line could equally represent a two-dimensional experiment,
where one of the variables is not shown in the plot. This unseen
variable can be thought of as coming up at right angles to the
paper. Each point in the figure now represents several experi-
mental trials. Thus the above arguments apply to any situation
where one or more important variables are left out of an experi-
mental run.

may affect crystallization and can be treated as
a variable.

Most crystallizers who wish to improve crystal
quality concentrate on optimizing only two vari-
ables — precipitant concentration and pH (e.g. Ref.
[11]). This is generally done as a two-dimensional
array of wells where precipitant concentration
varies in one direction, and pH in another. This
comparatively simple design reduces mistakes in
manual pipetting and is adequate for proteins in
good supply that crystallize easily. However, if op-
timization proves difficult much time and effort can
be saved by using multivariate designs even when
dispensing by hand. When using automatic dis-
pensers, multivariate designs should be used
routinely.

In a multivariate experiment, all of the important
variables are changed during each run of crystalli-
zation trials. The need for this arises because
the variables often interact with each other.
For example, if crystallization conditions are
painstakingly optimized at one protein concentra-
tion, this work may have to be repeated if it
is subsequently found that a different concentra-
tion works better. In a multivariate approach, vari-
ation of protein concentration would have been
included in the first round of experiments. This
would have shown the best direction to move with-
in the multidimensional space defined by the major
variables.

Fig. 1a shows a contour plot of quality against
two variables that do not interact with each other.
The contours form circles or ellipses. As an
example, variable 1 might be precipitant concentra-
tion, variable 2 might be protein concentration, and
the contours might represent crystal quality.
Fig. 1b shows two variables that do interact. Here
the contours form ellipses whose axes are sloping.

There are several important problems with the
conventional approach of changing only one or
two variables in a run:

1. It may take many rounds of experiments to find
the optimum point for crystallization. See
Fig. 2a for an example. Here, each line of points
represents an experimental run. It can be seen
that the chosen conditions approach the opti-
mum very slowly. A similar argument could be

applied to two-dimensional experimental de-
signs.1

2. Noisy data may prevent the optimum from be-
ing found at all, as shown in Fig. 2b. Higher
numbers here represent better quality crystals.
In this case, the point marked 5 appears, incor-
rectly, to give the best possible results.

3. In cases where variables must be changed in
large steps the optimum may not be found at all.
For example, incubators may only be available
at a few temperatures. In the example shown in
Fig. 2c, changing only the temperature (variable
1) gives no crystals at all, whereas improved
crystals could be obtained by varying pre-
cipitant concentration (variable 2) as well as
temperature.

3. Well-known multivariate designs

Efficient experimental designs are often based
on multidimensional cubes or spheres. In one of
the most effective designs, known as the central
composite [6], some trials are placed around a
central point at the vertices of a multidimensional
cube (all variables are varied) while other points
are displaced from the central point parallel to
the axes (one variable is varied while the others
are set at their mid-levels). Fig. 3a shows a three-
dimensional version (four- or five-dimensional
experiments, which would be appropriate for pro-
tein crystallization, are difficult to illustrate
graphically).

Another well-known design is the Box—Behnken
[7]. Here two variables vary at each point. Fig. 3b
shows a three-dimensional version.

At least one center point should be included in
these designs. If mathematical analysis of the
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Fig. 2. (a—c) Three of the problems associated with conventional experimental designs where variables are changed singly or in pairs. In
(a) each row of points represent an experimental run. Since two variables need to be changed simultaneously, it takes many runs to get
close to the optimum. (b) shows a case where experimental error has masked trends, suggesting that the optimum has been found when it
has not. Higher numbers represent better quality crystals. Here the point marked 5 is erroneously identified as the optimum. (c) A third
reason for using multivariate designs is that variables must often be changed in large steps. For example, incubators are often available
at only a few, widely spaced temperatures. In the example shown, the higher temperature (variable 1) gives no crystals, although it would
give superior results if precipitant concentration (variable 2) were to be varied as well.

response (e.g. quality of crystals) is to be performed,
it is useful to include several center points because
any error in the value of the center point makes the
interpretation of trends very difficult.

4. Software, including a novel user-friendly method
of designing experiments

The central composite, Box—Behnken and many
other similar designs including novel designs can be
generated and dispensed by the program XSTEP

[1] used with IMPAX, an automatic dispensing
system for microbatch crystallization. Designs with
up to four variables, plus temperature, can be pro-
duced. Print-outs from the program can also be
used as designs for manual experiments.

Without recourse to detailed mathematical anal-
ysis, good results can be obtained simply by choos-
ing the best point in an experimental run, and
making this the center of the next run. If the best
position for crystallization is clearly between two
points in a run, its position can be estimated “by
eye”. This approach is generally far quicker
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Fig. 3. A very well known experimental design — the central
composite. A three-dimensional version is shown, but higher
numbers of dimensions can be used. This design consists of one
or more center points (where all variables are set to their mid
levels), together with “axial” points (where all variables are set to
their mid levels except for one that is set to its high or low level)
and “factorial” points (where all variables are set either to their
low or their high levels). Usually several center points are dis-
pensed to give an estimate of experimental error. (b) shows
another well known experimental design — the Box—Behnken.
Here, variables are changed two at a time, with all the other
variables remaining at their mid levels.

than using mathematical models such as response
surface modeling to predict the best position for
crystallization. One problem with mathematical
analysis is that it is necessary to input the results
of all trials into a program, which is time-consum-
ing. Another is that it is not easy to transfer the
experimental details from a control program for
automatic crystallization to a program for math-
ematical analysis. However, for cases where protein
is in very short supply and the supply of labor is
plentiful, several commercial programs are avail-
able for such analysis. A good and user-friendly
example is The Unscrambler by CAMO ASA,
Trondheim, Norway.

The use of XSTEP to generate multivariate de-
signs will now be described briefly. The first step is
to select well that gave good crystals in a previous
experiment. Next, the EXPAND function is called.
A dialogue box appears as shown in Fig. 4. The
center point (corresponding to the well with good
crystals) is shown on the left. For a four-dimen-
sional experiment, two or three levels can be se-
lected for each variable as shown. Three levels are
usually used (each variable has a high, a low and
a medium level). Next, the range of variation is set
for each variable. This may be as great as 100% for
an additive that is of dubious value, or as little as
3% when one is near the end of optimization of
a major variable. Here, judgment based on pre-
vious experience must be used.

When these settings have been completed, a new
dialogue box appears, shown in Fig. 5. An array of
characters corresponding to the array of wells on
a plate is shown. The numerals show the number of
variables that depart from their central value for
each well. For example, the center points themsel-
ves are indicated by “0”. The points where all four
variables are changed are indicated by the numeral
“4”. These so-called “factorial” points correspond
to the vertices of a four-dimensional cube. Sim-
ilarly, “3”s indicate the centers of the edges, etc. By
pressing the numbers 0—4 these sets of points can be
introduced or removed from the design. The central
composite and Box—Behnken designs can be used
either by pressing the numbers that correspond to
these designs, or by pressing the short-cut keys
C and B, respectively. Other designs can be in-
vented as required.
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Fig. 4. Software for multivariate design initially allows the user to define the center point of the experiment, the number of levels for each
variable (usually three — high, medium and low), and the range of variation (usually 3—100%) for each variable.

Fig. 5. By allowing the user to select experimental points according to the number of variables that vary from their central value, the
program XSTEP allows the use of both novel and well-established designs. An array of characters represents the wells of a crystalliza-
tion plate, and numerals show the number of variables that depart from the central value. For example, the well known central
composite design corresponds to the 4s the 1s, and several 0s.
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Table 1
An example of optimization using multivariate experimental design

No. of variables
set high or low

[Thaumatin]
(mg/ml)

[Na/K Tartrate]
(M)

[HEPES pH7]
(mM)

Size of crystals
(lm)

Center points
1 0 M — 150 M — 0.4 M M — 50 450
2 0 M — 150 M — 0.4 M M — 50 450

Box—Behnken points
3 2 L — 120 L — 0.32 M M — 50 550
4 2 L — 120 M — 0.4 M L — 0 350
5 2 L — 120 M — 0.4 M H — 100 250
6 2 L — 120 H — 0.48 M M — 50 350

7 2 M — 150 L — 0.32 M L — 0 350
8 2 M — 150 L — 0.32 M H — 100 350
9 2 M — 150 H — 0.48 M L — 0 250

10 2 M — 150 H — 0.48 M H — 100 250
11 2 H — 180 L — 0.32 M M — 50 350
12 2 H — 180 M — 0.4 M L — 0 450
13 2 H — 180 M — 0.4 M H — 100 350
14 2 H — 180 H — 0.48 M M — 50 350

(2 level) factorial points
15 3 L — 120 L — 0.32 M L — 0 350
16 3 L — 120 L — 0.32 M H — 100 550
17 3 L — 120 H — 0.48 M L — 0 150
18 3 L — 120 H — 0.48 M H — 100 150
19 3 H — 180 L — 0.32 M L — 0 450
20 3 H — 180 L — 0.32 M H — 100 350
21 3 H — 180 H — 0.48 M L — 0 350
22 3 H — 180 H — 0.48 M H — 100 350

The particular design selected is not of para-
mount importance. Rather, the user should simply
adjust the design until the desired number of ex-
perimental points is achieved. Using this approach,
the points will always be placed symmetrically
around the center point, and spaced reasonably far
apart from each other.

Finally, the experiment can be printed and carried
out manually, or carried out automatically using the
same program if an IMPAX system is available.
Automatic execution takes a few minutes using the
microbatch crystallization method, or a few tens of
minutes using vapor diffusion crystallization.

5. Temperature

Temperature is an important and useful variable
in protein crystallization because it provides an

immediate method of changing the degree of super-
saturation without disturbing the experiment.
Most (though not all) proteins are more soluble at
higher temperatures. This effect has been used to
control the number of crystal nuclei formed in
microbatch experiments by changing the temper-
ature [12].

Temperature can easily be included in experi-
ments by setting up several identical multivariate
experiments and incubating each at a different tem-
perature. This method is very convenient, but it
is not optimal because the points are not evenly
spread out. Since protein crystallization experi-
ments are often very noisy, however, it can be
helpful to have these extra points. A more correct
method which requires more effort is to make tem-
perature one of the variables of a single design.
Thus a single Box—Behnken or central composite
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Fig. 6. An example of the use of multivariate designs to opti-
mize crystals. For simplicity a three dimensional experiment was
set up, although normally four dimensions plus temperature
would be used. The design consisted of two center points, 12
Box—Behnken points (centers of edges) and four full-factorial
points (vertices). Higher numbers indicate larger crystals. See
text and Table 1 for details. Note that the best crystals were
formed by reducing protein concentration — [thaumatin]
— a parameter that would not normally be changed.

design would be dispensed onto three different
plates which would be incubated at high, low and
medium temperatures. This can be achieved by
defining a regular design in triplicate, then deleting
the wells that are not required.

6. A practical example

Finally, we will consider a simple example where
a multivariate design gave better results than a con-
ventional design would have done. We wanted to
improve the quality of crystals of the protein
thaumatin (obtained from Sigma) grown in micro-
batch. We had found that approximately ten times
the normal concentration of protein gave much
larger crystals, but we wanted to see if we could
improve them further.

We chose to include two parameters that are not
normally changed in the first round of optimization
— protein concentration and buffer concentration
(we wanted to see if the buffer was really needed).
Since it is very hard to show graphically an experi-
ment with four or more dimensions, we limited
ourselves to three variables to illustrate the ap-
proach. We used a Box—Behnken design where two
parameters are set to extreme values for each trial,
but supplemented this with the factorial points
where all three parameters vary. We chose this
layout for no other reason than that we had about
20 ll of protein and this design fitted conveniently
into the top four rows of a crystallization plate. The
experimental details and results are given in Table 1.
(In this table H indicates that a parameter is set to
a high level, M to its mid level, and L to a low level.)
Fig. 6 shows the layout of the experiment as well as
the results. Higher numbers indicate larger crystals.

Note that the best crystals were found by varying
protein concentration. They would not have been
found in a conventional design where only pH and
precipitant concentration would be varied. Note
also the high level of noise in the results. Clearly it is
not worth putting a lot of time and energy into
analyzing these results. Of course the experiments
could be repeated and the results averaged to de-
crease the amount of noise, but this would not help
most crystallizers to achieve their objective — to
obtain good quality crystals as quickly and with as

little material as possible. In this case it would be
far better to follow up with a design with a slightly
smaller range centered around a point between
wells 3 and 16.

7. Conclusions

Software is available to design multivariate ex-
periments for protein crystallization automatically
or manually. Such designs reduce the number of
experimental points, saving time and materials, and
help to identify trends. The general feature of multi-
variate designs is that all of the important variables
are varied in each experimental run. The points in
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a run are generally arranged on the surface of
a multidimensional sphere or cube. By using an
approach where the user simply selects geometric
points (e.g. vertices, centers of edges, centers of
faces, etc.) experiments can easily be generated with
the desired number of points. Good results can be
obtained without the mathematical analysis of
trends simply by choosing the point that gave the
best results and making this the center of the design
for the next experimental run.
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