1. Protein crystallization screening

    ▪ Minimal protein wasted (< 0.5 µL)

    ▪ Low consumable cost

    ▪ Only 10.0 µL required for a 96 well screen

    Information about Oryx8

    Protein crystallization screening

    ▪ Minimal protein wasted (< 0.5 µL)

    ▪ Low consumable cost

    ▪ Only 10.0 µL required for a 96 well screen

    Information about Oryx8
  2. Scaling-up

    ▪ Drop range from 100 nL to 8.0 µL or larger

    ▪ Vary drop ratio or seed volume

    ▪ Dispense sitting drop, microbatch or hanging drop

    Information about scaling-up

    Scaling-up

    ▪ Drop range from 100 nL to 8.0+ µL or larger

    ▪ Vary drop ratio or seed volume

    ▪ Dispense sitting drop, microbatch or hanging drop

    Click for more information
  3. Automatic Optimization

    ▪ Dispense concentration and pH gradients

    ▪ Multivariate experiment design

    ▪ Reservoir filling for optimization volumes up to 500 µL

    Information about optimization

    Automatic Optimization

    ▪ Dispense concentration and pH gradients

    ▪ Multivariate experiment design

    ▪ Reservoir filling for optimization volumes up to 500 µL

    Click for more information
  4. Seed stock for rMMS

    ▪ Screen with highly concentrated seedstock

    ▪ Cross seeding from homologous proteins

    ▪ Dispense down to 10 nL seed stock

    Information about rMMS

    Seed stock for rMMS

    ▪ Screen with highly concentrated seedstock

    ▪ Cross seeding from homologous proteins

    ▪ Dispense down to 10 nL seed stock

    Information about rMMS
Automatic Protein Crystallization Systems

Minimal protein wasted
10.0 μl protein required for a 96 well
screen (100+100 nl)

rMMS microseeding
Screen with un-diluted seed stock.
1.5 μl required for 96 wells

Efficient dispensing
5 - 9 minutes for a 96 well screen.
(Dependant on volume + viscosity)

Low consumable cost
Re-usable microtips for screening
and optimization

Microbatch-under-oil
With automatic oil dispensing.
drops down to 70+70 nl

24 Well hanging drop
Dispense to coversides
fill reservoirs for optimization
Oryx Citations
Rationally seeded computational protein design of α-helical barrels
Albanese, K.I., Petrenas, R., Pirro, F., Naudin, E.A., Borucu, U., Dawson, W.M., Scott, D.A., Leggett, G.J., Weiner, O.D., Oliver, T.A. and Woolfson, D.N., 2024.
Nature Chemical Biology, pp.1-9.
Protein Thermodynamic Properties, Crystallisation, and the Hofmeister Series
Saridakis, E. and Donta, K., 2024.
ChemPlusChem, p.e202300733.
Structural and functional investigation of a fungal member of carbohydrate esterase family 15 with potential specificity for rare xylans
Mazurkewich, S., Scholzen, K.C., Brusch, R.H., Poulsen, J.C., Theibich, Y., Huttner, S., Olsson, L., Larsbrink, J. and Lo Leggio, L., 2023.
Acta Crystallographica Section D: Structural Biology, 79(6).
Metal-dependent enzyme symmetry guides the biosynthetic flux of terpene precursors
Ecker, F., Vattekkatte, A., Boland, W. and Groll, M., 2023.
Nature Chemistry, pp.1-8.
The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding
Roy, S., Vega, M.V., Ames, J.R., Britten, N., Kent, A., Evans, K., Isupov, M.N. and Harmer, N.J., 2023.
Journal of Biological Chemistry, p.103033.
The structure of a Bacteroides thetaiotamicron carbohydrate-binding module provides new insight into the recognition of complex pectic polysaccharides by the human microbiome
Trovão, F., Correia, V.G., Lourenço, F.M., Ribeiro, D.O., Carvalho, A.L., Palma, A.S. and Pinheiro, B.A., 2023.
Journal of Structural Biology: X, p.100084.
Structural basis for the carotenoid binding and transport function of a START domain
Sluchanko, N.N., Slonimskiy, Y.B., Egorkin, N.A., Varfolomeeva, L.A., Kleymenov, S.Y., Minyaev, M.E., Faletrov, Y.V., Moysenovich, A.M., Parshina, E.Y., Friedrich, T., Maksimov, E.G., Boyko, K.M. and Popov, V.O., 2022.
Structure.
Changes in active-site geometry on X-ray photoreduction of a lytic polysaccharide monooxygenase active-site copper and saccharide binding
Tandrup, T., Muderspach, S.J., Banerjee, S., Santoni, G., Ipsen, J.O., Hernandez-Rollan, C., Norholm, M.H., Johansen, K.S., Meilleur, F. and Lo Leggio, L., 2022.
IUCrJ, 9(5).
High-resolution structures of the SARS-CoV-2 N7-methyltransferase inform therapeutic development
Kottur, J., Rechkoblit, O., Quintana-Feliciano, R., Sciaky, D. and Aggarwal, A.K., 2022.
Nature Structural & Molecular Biology, 29(9), pp.850-853.
A cocktail of protective antibodies subverts the dense glycan shield of Lassa virus
Li, H., Buck, T., Zandonatti, M., Yin, J., Moon-Walker, A., Fang, J., Koval, A., Heinrich, M.L., Rowland, M.M., Diaz Avalos, R., Schendel, S.L., Hastie, K.M. and Saphire, E.O., 2022.
Science Translational Medicine, 14(668), p.eabq0991.


Conferences

Douglas Instruments is attending the following meetings:

ICCBM-18, Tempe, Arizona, USA
3 November - 9 November 2024



Please contact us to request to join
the Douglas Instruments Automatic
Protein Crystallization Group

Click Here to visit the group

 

 

Minimal protein wasted
10.0 μl protein required for a 96 well
screen (100+100 nl)

rMMS microseeding
Screen with un-diluted seed stock.
1.5 μl required for 96 wells

Efficient dispensing
5 - 9 minutes for a 96 well screen.
(Dependant on volume + viscosity)

Low consumable cost
Re-usable microtips for screening
and optimization

Microbatch-under-oil
With automatic oil dispensing.
drops down to 70+70 nl

24 Well hanging drop
Dispense to coversides
fill reservoirs for optimization
Oryx Citations
Rationally seeded computational protein design of α-helical barrels
Albanese, K.I., Petrenas, R., Pirro, F., Naudin, E.A., Borucu, U., Dawson, W.M., Scott, D.A., Leggett, G.J., Weiner, O.D., Oliver, T.A. and Woolfson, D.N., 2024.
Nature Chemical Biology, pp.1-9.
Protein Thermodynamic Properties, Crystallisation, and the Hofmeister Series
Saridakis, E. and Donta, K., 2024.
ChemPlusChem, p.e202300733.
Structural and functional investigation of a fungal member of carbohydrate esterase family 15 with potential specificity for rare xylans
Mazurkewich, S., Scholzen, K.C., Brusch, R.H., Poulsen, J.C., Theibich, Y., Huttner, S., Olsson, L., Larsbrink, J. and Lo Leggio, L., 2023.
Acta Crystallographica Section D: Structural Biology, 79(6).
Metal-dependent enzyme symmetry guides the biosynthetic flux of terpene precursors
Ecker, F., Vattekkatte, A., Boland, W. and Groll, M., 2023.
Nature Chemistry, pp.1-8.
The ROK kinase N-acetylglucosamine kinase uses a sequential random enzyme mechanism with successive conformational changes upon each substrate binding
Roy, S., Vega, M.V., Ames, J.R., Britten, N., Kent, A., Evans, K., Isupov, M.N. and Harmer, N.J., 2023.
Journal of Biological Chemistry, p.103033.
The structure of a Bacteroides thetaiotamicron carbohydrate-binding module provides new insight into the recognition of complex pectic polysaccharides by the human microbiome
Trovão, F., Correia, V.G., Lourenço, F.M., Ribeiro, D.O., Carvalho, A.L., Palma, A.S. and Pinheiro, B.A., 2023.
Journal of Structural Biology: X, p.100084.
Structural basis for the carotenoid binding and transport function of a START domain
Sluchanko, N.N., Slonimskiy, Y.B., Egorkin, N.A., Varfolomeeva, L.A., Kleymenov, S.Y., Minyaev, M.E., Faletrov, Y.V., Moysenovich, A.M., Parshina, E.Y., Friedrich, T., Maksimov, E.G., Boyko, K.M. and Popov, V.O., 2022.
Structure.
Changes in active-site geometry on X-ray photoreduction of a lytic polysaccharide monooxygenase active-site copper and saccharide binding
Tandrup, T., Muderspach, S.J., Banerjee, S., Santoni, G., Ipsen, J.O., Hernandez-Rollan, C., Norholm, M.H., Johansen, K.S., Meilleur, F. and Lo Leggio, L., 2022.
IUCrJ, 9(5).
High-resolution structures of the SARS-CoV-2 N7-methyltransferase inform therapeutic development
Kottur, J., Rechkoblit, O., Quintana-Feliciano, R., Sciaky, D. and Aggarwal, A.K., 2022.
Nature Structural & Molecular Biology, 29(9), pp.850-853.
A cocktail of protective antibodies subverts the dense glycan shield of Lassa virus
Li, H., Buck, T., Zandonatti, M., Yin, J., Moon-Walker, A., Fang, J., Koval, A., Heinrich, M.L., Rowland, M.M., Diaz Avalos, R., Schendel, S.L., Hastie, K.M. and Saphire, E.O., 2022.
Science Translational Medicine, 14(668), p.eabq0991.


Conferences

Douglas Instruments is attending the following meetings:

ICCBM-18, Tempe, Arizona, USA
3 November - 9 November 2024



Please contact us to request to join
the Douglas Instruments Automatic
Protein Crystallization Group

Click Here to visit the group

 

 

Oryx8 Microbatch-Under-Oil Tips & Techniques Contact Us
Oryx4 rMMS Videos About
OryxNano Oryx Comparison table News & Conferences Cookie Policy
Crystallization Plates Privacy Policy
Microtips
All Products

Email: info@douglas.co.uk

© 2024
Douglas Instruments Ltd
Douglas House
East Garston
Berkshire, RG17 7HD
United Kingdom